One year of observations from a network of five 915-MHz boundary-layer radar wind profilers equipped with radio acoustic sounding systems located in California's Central Valley are used to investigate the annual variability of convective boundary-layer depth and its correlation to meteorological parameters and conditions. Results from the analysis show that at four of the sites, the boundary-layer height reaches its maximum in the late-spring months then surprisingly decreases during the summer months, with mean July depths almost identical to those for December. The temporal decrease in boundary-layer depth, as well as its spatial variation, is found to be consistent with the nocturnal low-level lapse rate observed at each site. Multiple forcing mechanisms that could explain the unexpected seasonal behaviour of boundary-layer depth are investigated, including solar radiation, precipitation, boundary-layer mesoscale convergence, low-level cold-air advection, local surface characteristics and irrigation patterns and synoptic-scale subsidence. Variations in solar radiation, precipitation and synoptic-scale subsidence do not explain the shallow summertime convective boundary-layer depths observed. Topographically forced cold-air advection and local land-use characteristics can help explain the shallow CBL depths at the four sites, while topographically forced low-level convergence helps maintain larger CBL depths at the fifth site near the southern end of the valley.