2019
DOI: 10.32628/cseit1952275
|View full text |Cite
|
Sign up to set email alerts
|

Content-Based Image Retrieval : A Comprehensive Study

Abstract: Learning efficient options illustrations and equivalency metric measures are imperative to the searching performance of a content-based image retrieval (CBIR) machine. Despite in depth analysis efforts for many years, it remains one amongst the foremost difficult open issues that significantly hinders the success of real- world CBIR systems. The key issue has been associated to the commonly known “linguistic gap” problem that exists between low-level image pixels captured by machines and high-level linguistics… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 39 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?