The need for a general purpose Content Based Image Retrieval (CBIR) system for huge image databases has attracted information-technology researchers and institutions for CBIR techniques development. These techniques include image feature extraction, segmentation, feature mapping, representation, semantics, indexing and storage, image similarity-distance measurement and retrieval making CBIR system development a challenge. Since medical images are large in size running to megabits of data they are compressed to reduce their size for storage and transmission. This paper investigates medical image retrieval problem for compressed images. An improved image classification algorithm for CBIR is proposed. In the proposed method, RAW images are compressed using Haar wavelet. Features are extracted using Gabor filter and Sobel edge detector. The extracted features are classified using Partial Recurrent Neural Network (PRNN). Since training parameters in Neural Network are NP hard, a hybrid Particle Swarm Optimization (PSO)-Cuckoo Search algorithm (CS) is proposed to optimize the learning rate of the neural network.