In many applications, while machine learning (ML) can be used to derive algorithmic models to aid decision processes, it is often difficult to learn a precise model when the number of similar data points is limited. One example of such applications is data reconstruction from historical visualizations, many of which encode precious data, but their numerical records are lost. On the one hand, there is not enough similar data for training an ML model. On the other hand, manual reconstruction of the data is both tedious and arduous. Hence, a desirable approach is to train an ML model dynamically using interactive classification, and hopefully, after some training, the model can complete the data reconstruction tasks with less human interference. For this approach to be effective, the number of annotated data objects used for training the ML model should be as small as possible, while the number of data objects to be reconstructed automatically should be as large as possible. In this article, we present a novel technique for the machine to initiate intelligent interactions to reduce the user’s interaction cost in interactive classification tasks. The technique of machine-initiated intelligent interaction (MI3) builds on a generic framework featuring active sampling and default labeling. To demonstrate the MI3 approach, we use the well-known cholera map visualization by John Snow as an example, as it features three instances of MI3 pipelines. The experiment has confirmed the merits of the MI3 approach.