2019
DOI: 10.24003/emitter.v7i1.361
|View full text |Cite
|
Sign up to set email alerts
|

Content-Dependent Image Search System for Aggregation of Color, Shape and Texture Features

Abstract: The existing image search system often faces difficulty to find a appropriate retrieved image corresponding to an image query. The difficulty is commonly caused by that the users’ intention for searching image is different with dominant information of the image collected from feature extraction. In this paper we present a new approach for content-dependent image search system. The system utilizes information of color distribution inside an image and detects a cloud of clustered colors as something - supposed… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2021
2021
2022
2022

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 18 publications
0
1
0
1
Order By: Relevance
“…Transformasi Gabor banyak digunakan dalam pengolahan citra dengan tujuan ekstraksi fitur dan analisis tekstur. Berdasarkan fakta bahwa transformasi Gabor adalah selektif terhadap orientasi [7], peneliti telah menerapkan subband dekomposisi dengan empat orientasi yang berbeda. Gambar 3 menampilkan kernel digunakan untuk membuat subbands Gabor [8].…”
Section: Ekstraksi Fitur Teksturunclassified
“…Transformasi Gabor banyak digunakan dalam pengolahan citra dengan tujuan ekstraksi fitur dan analisis tekstur. Berdasarkan fakta bahwa transformasi Gabor adalah selektif terhadap orientasi [7], peneliti telah menerapkan subband dekomposisi dengan empat orientasi yang berbeda. Gambar 3 menampilkan kernel digunakan untuk membuat subbands Gabor [8].…”
Section: Ekstraksi Fitur Teksturunclassified
“…The mathematical morphology-based image process system has attracted attention worldwide, particularly the intelligently recognition agriculture disease (Qiao, 2009). Image preprocessing is the first stage of detection to improve the quality of images (Kurniasari et al, 2019). The Canny Edge Detection Algorithm gives a simple edge detection operation, which reduces time and memory consumption (Kabade, 2016).…”
Section: Introductionmentioning
confidence: 99%