2022
DOI: 10.48550/arxiv.2207.14168
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Content-oriented learned image compression

Abstract: In recent years, with the development of deep neural networks, end-to-end optimized image compression has made significant progress and exceeded the classic methods in terms of rate-distortion performance. However, most learning-based image compression methods are unlabeled and do not consider image semantics or content when optimizing the model. In fact, human eyes have different sensitivities to different content, so the image content also needs to be considered. In this paper, we propose a content-oriented … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 17 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?