In a Model Predictive Control (MPC) setting, the precise simulation of the behavior of the system over a finite time window is essential. This application-oriented benchmark study focuses on a robot arm that exhibits various nonlinear behaviors. For this arm, we have a physics-based model with approximate parameter values and an open benchmark dataset for system identification. However, the long-term simulation of this model quickly diverges from the actual arm’s measurements, indicating its inaccuracy. We compare the accuracy of black-box and purely physics-based approaches with several physics-informed approaches. These involve different combinations of a neural network’s output with information from the physics-based model or feeding the physics-based model’s information into the neural network. One of the physics-informed model structures can improve accuracy over a fully black-box model.