To investigate the prognostic performance of multi-level computed tomography (CT)-dose fusion dosiomics at the image-, matrix-, and featurelevels from the gross tumor volume (GTV) at nasopharynx and the involved lymph node for nasopharyngeal carcinoma (NPC) patients. Methods: Two hundred and nineteen NPC patients (175 vs. 44 for training vs. internal validation) were used to train prediction model, and 32 NPC patients were used for external validation. We first extracted CT and dose information from intratumoral nasopharynx (GTV_nx) and lymph node (GTV_nd) regions. Then, the corresponding peritumoral regions (RING_3 mm and RING_5 mm) were also considered. Thus, the individual and combination of intratumoral and peritumoral regions were as follows: GTV_nx, GTV_nd, RING_3 mm_nx, RING_3 mm_nd, RING_5 mm_nx, RING_5 mm_nd, GTV_nxnd, RING_3 mm_nxnd, RING_5 mm_nxnd, GTV + RING_3 mm_nxnd, and GTV + RING_5 mm_nxnd. For each region, 11 models were built by combining five clinical parameters and 127 features from: (1) dose images alone;(2-7) fused dose and CT images via wavelet-based fusion using CT weights of 0.2, 0.4, 0.6, and 0.8, gradient transfer fusion, and guided-filtering-based fusion (GFF); (8) fused matrices (sumMat); (9-10) fused features derived via feature averaging (avgFea) and feature concatenation (conFea); and finally, (11) CT images alone. The concordance index (C-index) and Kaplan-Meier curves with log-rank test were used to assess model performance.
Results:The fusion models'performance was better than single CT/dose model on both internal and external validation. Models that combined the information from both GTV_nx and GTV_nd regions outperformed the single region model. For internal validation, GTV + RING_3 mm_nxnd GFF model achieved the Chunya Cai and Wenbing Lv contributed equally to this work.