2014
DOI: 10.1016/j.patrec.2013.05.024
|View full text |Cite
|
Sign up to set email alerts
|

Context-based hand gesture recognition for the operating room

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
32
0
1

Year Published

2014
2014
2022
2022

Publication Types

Select...
4
3
1

Relationship

1
7

Authors

Journals

citations
Cited by 68 publications
(33 citation statements)
references
References 34 publications
0
32
0
1
Order By: Relevance
“…Each HMM comprised five states in a left-to-right configuration and was trained using the Baum-Welch algorithm, which has been shown to generate promising results in hand gesture recognition (Jacob and Wachs, 2014). An observation was classified based on the specific HMM chain that best explained that observation, that is, by determining which of the trained HMM outputs had the highest probability for a state sequence⃗ z given a new observation g u and its intrinsic parameters (the initial state distribution vector π, the transition matrix A, and the observation probability within each state B), and thereby assigning the corresponding label to the new sample.…”
Section: Classification Algorithmsmentioning
confidence: 99%
See 1 more Smart Citation
“…Each HMM comprised five states in a left-to-right configuration and was trained using the Baum-Welch algorithm, which has been shown to generate promising results in hand gesture recognition (Jacob and Wachs, 2014). An observation was classified based on the specific HMM chain that best explained that observation, that is, by determining which of the trained HMM outputs had the highest probability for a state sequence⃗ z given a new observation g u and its intrinsic parameters (the initial state distribution vector π, the transition matrix A, and the observation probability within each state B), and thereby assigning the corresponding label to the new sample.…”
Section: Classification Algorithmsmentioning
confidence: 99%
“…Researchers have been studying how gestures are produced, perceived, and mimicked, as well as how computer systems can detect and recognize them. This last area is especially relevant to human-computer interaction (Pavlovic et al, 1997;Rautaray and Agrawal, 2015), HRI (Nickel and Stiefelhagen, 2007;Yang et al, 2007), and assistive technologies (Jacob and Wachs, 2014;Jiang et al, 2016b), where humans rely on accurate recognition by machines.…”
Section: Introductionmentioning
confidence: 99%
“…Los primeros usos de este dispositivo para tareas ajenas a su concepción inicial de instrumento para video juegos, se dieron en sistemas de reconocimiento de gestos de manera general ( [15], [16], [17], [18]). Posteriormente se empezó a utilizar el dispositivo en diversas aplicaciones, entre ellas la replicación de movimientos en robots ( [19], [20]), la rehabilitación de pacientes [21], [22] y, finalmente, su uso como interfaz natural para el control de dispositivos quirúrgicos, como el caso del uso del Kinect para reconocer un protocolo de gestos en la inserción de guías dentro del paciente [23]; la evaluación del mismo dispositivo como generador de movimientos en un simulador quirúrgico [24], o el uso del Kinect para el reconocimiento de un protocolo de gestos en una biopsia cerebral [25]. El mayor aporte de este proyecto es la utilización del Kinect para mover dos robots quirúrgicos en operaciones de laparoscopia.…”
Section: Dispositivo Kinect Y Su Interacción Con Robosurgeryunclassified
“…There are very interesting published over the past two decades. The close problem statements are contained in [1,2,3,4,5]. In these papers a way to assess the quality of the medicine sterile interfaces is given.…”
Section: Overviewmentioning
confidence: 99%