2021
DOI: 10.48550/arxiv.2112.06452
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Contextual Exploration Using a Linear Approximation Method Based on Satisficing

Abstract: Deep reinforcement learning has enabled human-level or even super-human performance in various types of games. However, the amount of exploration required for learning is often quite large. Deep reinforcement learning also has super-human performance in that no human being would be able to achieve such amounts of exploration. To address this problem, we focus on the satisficing policy, which is a qualitatively different approach from that of existing optimization algorithms. Thus, we propose Linear RS (LinRS),… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 9 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?