Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) 2022
DOI: 10.18653/v1/2022.acl-long.334
|View full text |Cite
|
Sign up to set email alerts
|

Contextual Fine-to-Coarse Distillation for Coarse-grained Response Selection in Open-Domain Conversations

Abstract: We study the problem of coarse-grained response selection in retrieval-based dialogue systems. The problem is equally important with fine-grained response selection, but is less explored in existing literature. In this paper, we propose a Contextual Fine-to-Coarse (CFC) distilled model for coarse-grained response selection in open-domain conversations. In our CFC model, dense representations of query, candidate contexts and responses is learned based on the multi-tower architecture using contextual matching, a… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
references
References 28 publications
0
0
0
Order By: Relevance