Vegetation species mapping using airborne imaging spectroscopy yields accurate results and is important for advancing conservation objectives and biogeographic studies. As these data become more readily available owing to the upcoming launch of spaceborne imaging spectrometers, it is necessary to understand how these data can be used to consistently classify species across large geographic scales. However, few studies have attempted to map species across multiple ecosystems; therefore, little is known regarding the effect of intra-specific variation on the mapping of a single species across a wide range of environments and among varying backgrounds of other non-target species. To explore this effect, we developed and tested species classification models for Metrosideros polymorpha, a highly polymorphic canopy species endemic to Hawai'i, which is found in a diverse array of ecosystems. We compared the accuracies of support vector machine (SVM) and random forest models trained on canopy reflectance data from each of eight distinct ecosystems (ecosystem-specific) and a universal model trained on data from all ecosystems. When applied to ecosystem-specific test datasets, the ecosystem-specific models outperformed the universal model; however, the universal model retained high (>81%) accuracies across all ecosystems. Additionally, we found that models from ecosystems with broad variation in M. polymorpha canopy traits, as estimated using chemometric equations applied to canopy spectra, accurately predicted M. polymorpha in other ecosystems. While species classifications across ecosystems can yield accurate results, these results will require sampling procedures that capture the intra-specific variation of the target species.