Continual learning of a time series model using a mixture of HMMs with application to the IoT fuel sensor verification
Przemysław Głomb,
Michal Cholewa,
Pawel Foszner
et al.
Abstract:This paper presents an application of a mixture of Hidden Markov Models (HMMs) as a tool for verification of IoT fuel sensors. The IoT fuel sensors report the level of fuel in tanks of a petrol station, and are a key component for monitoring system reliability (billing), safety (fuel/oil leak detection) and security (theft prevention). We propose an algorithm for learning a mixture of HMMs based on a continual learning principle, i.e. it adapts the model while monitoring a sensor over time, signalling unexpect… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.