2021
DOI: 10.48550/arxiv.2101.05850
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Continual Learning of Knowledge Graph Embeddings

Abstract: In recent years, there has been a resurgence in methods that use distributed (neural) representations to represent and reason about semantic knowledge for robotics applications. However, while robots often observe previously unknown concepts, these representations typically assume that all concepts are known a priori, and incorporating new information requires all concepts to be learned afresh. Our work relaxes the static assumptions of these representations to tackle the incremental knowledge graph embedding … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 22 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?