Abstract:We firstly generalize the fuzzy way-below relation on an L-poset, and consider its continuity by means of this relation. After that, we introduce a kind of stratified L-generalized convergence structure on an L-poset. In terms of that, L-fuzzy Scott topology and fuzzy Scott topology are considered, and the properties of fuzzy Scott topology are discussed in detail. At last, we investigate the Scott convergence of stratified L-filters on an L-poset, and show that an L-poset is continuous if and only if the Scott convergence on it coincides with the convergence with respect to the corresponding topological space.