TENCON 2018 - 2018 IEEE Region 10 Conference 2018
DOI: 10.1109/tencon.2018.8650196
|View full text |Cite
|
Sign up to set email alerts
|

Continuous Automatic Bioacoustics Monitoring of Bird Calls with Local Processing on Node Level

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
3
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
2
1
1
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(5 citation statements)
references
References 17 publications
0
3
0
2
Order By: Relevance
“…Já [B. T. Padovese 2019] utlizou um Multilayer Perceptron para monitoramento do pássaro da amazônia brasileira, a Rhodocorytha, alcanc ¸ando resultados de até 98% de acurácia. Residual Neural Network [Xiao et al 2022] e [Hu et al 2023] Convolutional Neural Network [Hidayat et al 2021] e [Maegawa et al 2021] Support Vector Machine (SVM) [Weerasena et al 2018] Spiking Neural Network [Mohanty et al 2023] Naive Bayes Classifier [Tivarekar et al 2018] Recurrent Neural Network [Xie et al 2020] Em [Yang et al 2022] foi proposto um modelo de reconhecimento de pássaros usando a arquitetura Lightweight Neural Networks (LWN) que são um subconjunto das Redes de Peso Contínuo convencionais (CWN). Foi usado um conjunto de dados de Mel Spectrogram Min-Max Standardization, alcanc ¸ando uma acurácia de 95,12%.…”
Section: Resultados E Discussõesunclassified
See 1 more Smart Citation
“…Já [B. T. Padovese 2019] utlizou um Multilayer Perceptron para monitoramento do pássaro da amazônia brasileira, a Rhodocorytha, alcanc ¸ando resultados de até 98% de acurácia. Residual Neural Network [Xiao et al 2022] e [Hu et al 2023] Convolutional Neural Network [Hidayat et al 2021] e [Maegawa et al 2021] Support Vector Machine (SVM) [Weerasena et al 2018] Spiking Neural Network [Mohanty et al 2023] Naive Bayes Classifier [Tivarekar et al 2018] Recurrent Neural Network [Xie et al 2020] Em [Yang et al 2022] foi proposto um modelo de reconhecimento de pássaros usando a arquitetura Lightweight Neural Networks (LWN) que são um subconjunto das Redes de Peso Contínuo convencionais (CWN). Foi usado um conjunto de dados de Mel Spectrogram Min-Max Standardization, alcanc ¸ando uma acurácia de 95,12%.…”
Section: Resultados E Discussõesunclassified
“…Em [Maegawa et al 2021], foi apresentada uma ferramenta para acompanhamento de uma espécie de pássaro com o uso de CNN e com acurácia geral de 97% para este sistema. [Weerasena et al 2018] utilizam Suport Vector Machine (SVM) para criac ¸ão de um classificador local, para funcionar junto aos dispositivos de captura em campo. O sistema foi validado com 93,5% de acurácia utilizando 214 arquivos de som de 5 espécies.…”
Section: Resultados E Discussõesunclassified
“…The most common approach is using CNN [1] [2]. Some of the approaches use machine learning [3], some use neural networks [4] while some combine machine learning and neural networks like combination of ANN(Arti cial Neural Network) and SVM [5] [6], combination of ANN and KNC(K-Nearest Centroid) where SVM and KNC are used for processing audio signals before feeding them into network. An approach using RNN was proposed, also combination of CNN and Recurrent Neural Network [7] model was proposed.…”
Section: Methodsmentioning
confidence: 99%
“…Convolution layers uses (5,5) two-dimensional convolution matrix keeping the padding same. Convolution layers of neural network are followed by max pooling layers with the lter size of (3,3).…”
Section: Model Architecturementioning
confidence: 99%
“…Cinkler et al have used SVM-based two-step classifiers to identify the sounds of birds on agricultural land and play a sound when birds are identified near the crops. In bioacoustics, SVM was used to classify healthy and unhealthy birds . Researchers , have used SVM for avian influenza disease infected birds on broiler chicken farms.…”
Section: Role Of Emerging Technologies In Poultry Health Managementmentioning
confidence: 99%