Lentiviral vector and virus-like particle (VLP) manufacturing have been published in fed-batch upstream and batch downstream modes before. Batch downstream and continuous upstream in perfusion mode were reported as well. This study exemplifies development and validation steps for a digital twin combining a physical-chemical-based mechanistic model for all unit operations with a process analytical technology strategy in order to show the efforts and benefits of autonomous operation approaches for manufacturing scale. As the general models are available from various other biologic manufacturing studies, the main step is model calibration for the human embryo kidney cell-based VLPs with experimental quantitative validation within the Quality-by-Design (QbD) approach, including risk assessment to define design and control space. For continuous operation in perfusion mode, the main challenge is the efficient separation of large particle manifolds for VLPs and cells, including cell debris, which is of similar size. Here, innovative tangential flow filtration operations are needed to avoid fast blocking with low mechanical stress pumps. A twofold increase of productivity was achieved using simulation case studies. This increase is similar to improvements previously described for other entities like plasmid DNAs, monoclonal antibodies (mAbs), and single-chain fragments of variability (scFv) fragments. The advantages of applying a digital twin for an advanced process control strategy have proven additional productivity gains of 20% at 99.9% reliability.