Abstract:In this paper, we introduce a concept of the Euclidean combinatorial configuration as a mapping of a set of certain objects into a point of Euclidean space. We classify Euclidean combinatorial configurations sets based on their structure and constraints. The proposed typology forms the basis for studying continuous functional representations of combinatorial configurations. Special classes of functional extensions are introduced, their properties are described, and corresponding examples are given.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.