2022
DOI: 10.56415/basm.y2022.i1.p3
|View full text |Cite
|
Sign up to set email alerts
|

Continuous Extensions On Euclidean Combinatorial Configurations

Abstract: In this paper, we introduce a concept of the Euclidean combinatorial configuration as a mapping of a set of certain objects into a point of Euclidean space. We classify Euclidean combinatorial configurations sets based on their structure and constraints. The proposed typology forms the basis for studying continuous functional representations of combinatorial configurations. Special classes of functional extensions are introduced, their properties are described, and corresponding examples are given.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 31 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?