Phenolic compounds are found in surface and groundwater as well as wastewater from several industries. It is necessary to eliminate phenols and phenolic compounds from contaminated water before releasing into water bodies due to their toxicity to human beings. Photocatalytic degradation seems to be a promising technology for the degradation of several phenolic compounds. Complete mineralization of phenol and phenolic compound has been achieved with TiO 2 -based photocatalysts under both UV and visible-light irradiation. This chapter will evaluate the conventional processes and advanced oxidation processes for the degradation of phenol and phenolic compounds. The process economics and efficiencies of different advanced oxidation processes will also be discussed. The main focus of the chapter is photocatalytic degradation processes under UV and visible light along with a detailed review of several factors affecting degradation of phenol and phenolic compounds. Photocatalytic degradation process is governed by reactions with hydroxyl radical or superoxide ion. The extent of degradation depends on light sources (UV, visible, and solar), the type of photocatalyst, and experimental conditions (pH, photocatalyst dosage, initial concentration of phenolic compounds, light intensity, electron donor concentration, etc.). Visible-light-active photocatalysts are applied by several researchers to exploit sunlight and to make the photocatalysis process sustainable. In the future, using sunlight in place of UV could make photocatalysis economically more efficient.