The design of microdevices
in which components with magnetic character
must be separated and recovered from reactive media benefits from
the advantages of microfluidics and meets the criteria for process
intensification; however, there are open questions, such as the design
of the most appropriate magnet arrangement, that need further research
in order to increase the magnetic gradient exerted on the particles.
Herein, we focus on the continuous recovery of magnetic microparticles,
that can be used as support to facilitate the recovery of biocatalysts
(magnetic microcatalysts, MMCs) from biological fluids. We analyze
and compare the performance of two typical magnetophoretic microdevices
for addressing bead recovery: (i) annular channels with a quadrupole
orientation of the permanent magnets (quadrupole magnetic sorter,
QMS) and (ii) the standard design, which consists of rectangular channels
with a single permanent magnet to generate the magnetic field. To
this end, an experimentally validated computational fluid dynamics
(CFD) numerical model has been employed. Our results reveal that for
devices with the same width and length, the micro-QMS, in comparison
to a rectangular channel, could accomplish the complete particle retrieval
while (i) processing more than 4 times higher fluid velocities, treating
more than 360 times higher flow rates or (ii) working with smaller
particles, thus reducing by 55% the particle mass. Additionally, the
parallel performance of ≈300 micro-QMSs fulfills the processing
of flow rates as high as 200 L·h
–1
while entirely
capturing the magnetic beads. Thereby, this work shows the potential
of the QMS advanced design in the intensification of the recovery
of catalysts supports of magnetic character.