2018
DOI: 10.1186/s13661-018-0991-1
|View full text |Cite
|
Sign up to set email alerts
|

Continuous minimizer of eigenvalues for eigenvalue problem with equimeasurable weights

Abstract: The problem in this paper is motivated by physical problems concerned with the case when a class of continuous and equimeasurable densities of a string is given then how to find minimal frequencies among these given densities, that is, what kind of densities minimize the frequencies. By taking Dirichlet eigenvalues into account, given a certain weight function ω, we will show the minimizer of the mth eigenvalue is the m-degree continuous symmetrical decreasing rearrangement of ω. The main result of this paper … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 13 publications
0
0
0
Order By: Relevance