2018
DOI: 10.1007/s10772-018-9497-6
|View full text |Cite
|
Sign up to set email alerts
|

Continuous Punjabi speech recognition model based on Kaldi ASR toolkit

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
6
0
2

Year Published

2019
2019
2023
2023

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 38 publications
(8 citation statements)
references
References 18 publications
0
6
0
2
Order By: Relevance
“…We chose 4 people, 3 women and a 2 mens to pronounce 4 words of the Moroccan dialect which are: ‫)ﺳﻼم(‬ = (Hi), ‫)ﻛﯿﺪاﯾﺮ(‬ = (How are you), ‫)ﻻﺑﺎس(‬ = (There is nothing wrong), ‫)ﺑﺨﯿﺮ(‬ = (Fine) and we recorded the voices of the speakers in files in (.wav) format. later we began our work of the recognition and the lyrics of the Moroccan dialect by the part Learning [11], through ''add a new sound from file'' which invites the user to choose a file (.wav) and classify it by Identity , from ID:1 to ID:5 [15]. we continued the training phase to build a database of files (.wav) with 4 classes, each class represents a welldefined speaker.The speech of eleven male speakers and nine female speakers are used for training, and the speech of one male speaker and three female speakers are used for testing.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…We chose 4 people, 3 women and a 2 mens to pronounce 4 words of the Moroccan dialect which are: ‫)ﺳﻼم(‬ = (Hi), ‫)ﻛﯿﺪاﯾﺮ(‬ = (How are you), ‫)ﻻﺑﺎس(‬ = (There is nothing wrong), ‫)ﺑﺨﯿﺮ(‬ = (Fine) and we recorded the voices of the speakers in files in (.wav) format. later we began our work of the recognition and the lyrics of the Moroccan dialect by the part Learning [11], through ''add a new sound from file'' which invites the user to choose a file (.wav) and classify it by Identity , from ID:1 to ID:5 [15]. we continued the training phase to build a database of files (.wav) with 4 classes, each class represents a welldefined speaker.The speech of eleven male speakers and nine female speakers are used for training, and the speech of one male speaker and three female speakers are used for testing.…”
Section: Resultsmentioning
confidence: 99%
“…These sections are called frames and the motivation for this framing process is the quasistationary nature of the 1-D signals. However, if we examine the signal over discrete sections, which are sufficiently short in duration, then these sections can be considered as stationary and exhibit stable characteristics [9][10][11]. To avoid loss of information, frame overlap is used.…”
Section: Extraction Of Mfccsmentioning
confidence: 99%
“…It is observed that the Tri3 models outperform Tri2 models and Tri2 models lead to improvements over Tri1 models and all triphone models outperformed the monophone models and MFCC features worked well than PLP features. The Tri2 and Tri3 models using MFCC achieved a best WER of 21.8% and 21.2% [7].…”
Section: Literature Surveymentioning
confidence: 98%
“…Bu özellikler, ASR sistemleri için önerilen ve başarılı bir şekilde kullanılan farklı özellik çıkarım teknikleriyle elde edilmektedir. Özellik çıkarımı ve dalga formunu okuyabilmek için Kaldi, standart Mel Frekanslı Cepstral Katsayıları (MFCC: Mel-Frequency Cepstrum Coefficient) özelliklerinin oluşturulmasını desteklemektedir [32]. MFCC hesaplamanın tekniği temel olarak kısa vadeli analize dayanmaktadır.…”
Section: B 1 öZellik çıKarımıunclassified
“…Dolayısıyla uzun bir cümledeki kelimelerin dizilişini modellemek n-gram'lar ile mümkün olmayıp sadece kısıtlı kelime geçmişi modellenebilmektedir. İleri beslemeli sinir ağını kullanan dil modellerinde Markov varsayımı bulunmadığı için bu modeller ile kelimelerdeki uzun bağımlılıklar modellenebilmektedir[38].Dil Modeli, bir dildeki kelimelerin ve cümlelerin yapısı ve sırasını modelleyerek o dile ait bir istatistiksel model üretmektedir[39]. En basit ifade ile dil modeli bir kelime dizisinden sonra hangi kelimelerin gelebileceğini modelleyip kod çözme zamanında olası dizilişleri üretmektedir.…”
unclassified