We investigated the impact of water weakening on the mechanical behavior of Obourg Chalk and Ciply Chalk (Mons Basin, Belgium). Different mechanical tests were conducted to estimate the unconfined compressive strength (UCS), tensile strength, Young’s modulus, mechanical strength under triaxial loading, critical pressure, fracture toughness, cohesion, and internal friction coefficient on samples either dry or saturated with water or brine. This extensive dataset allowed us to calculate wet-to-dry ratios (WDR), i.e., the ratio between any property for a dry sample to that for the water-saturated sample. For both chalks, we found that water has a strong weakening effect with WDR ranging from 0.4 to 0.75. Ciply Chalk exhibits more water weakening than Obourg Chalk. The highest water weakening effect was obtained for UCS, critical pressure, and Young’s modulus. Weakening effects are still present in brine-saturated samples but their magnitude depends on the fluid composition. The mechanical data were correlated to variations in surface energy derived from three different methods: fracture mechanics, contact angle goniometry, and atomic force microscopy. Water weakening in the tested chalks can be explained by a clear reduction in surface energy and by the existence of repulsive forces which lower the cohesion.