In present paper, an analysis of the stability behaviour of ideal efficient solutions to parametric vector optimization problems is conducted. A sufficient condition for the existence of ideal efficient solutions to locally perturbed problems and their nearness to a given reference value is provided by refining recent results on the stability theory of parameterized set-valued inclusions. More precisely, the Lipschitz lower semicontinuity property of the solution mapping is established, with an estimate of the related modulus. A notable consequence of this fact is the calmness behaviour of the ideal value mapping associated to the parametric class of vector optimization problems. Within such an analysis, a refinement of a recent existence result, specific for ideal efficient solutions to unperturbed problem and enhanced by related error bounds, is discussed. Some connections with the concept of robustness in multi-objective optimization are also sketched.