Spinal cord stimulation (SCS) is used to manage chronic intractable neuropathic pain. We examined parameters of SCS in rats with spared nerve injury by modulating frequency (4Hz vs. 60Hz), duration (30m vs. 6h), or intensity (50%, 75%, or 90% MT). To elucidate potential mechanisms modulated by SCS, we examined immunoreactivity glial markers in the spinal cord after SCS). An epidural SCS lead was implanted in the upper lumbar spinal cord. Animals were tested for mechanical withdrawal threshold (MWT) of the paw before and 2 weeks after SNI, before and after SCS daily for 4 days, and for 9 days after SCS. Seperate groups of animals were tested for glial immunoreactivity after 4 days of 6h SCS. All rats showed a decrease in MWT 2 weeks after nerve injury and an increase in glial activation. For frequency, 4Hz or 60Hz SCS reversed the MWT when compared to sham SCS. For duration, 6h of SCS showed a greater reduction in MWT when compared to 30 min. For intensity, 90% MT was greater than 75% MT and both were greater than 50% MT or sham SCS. SCS decreased glial activation (GFAP, MCP-1 and OX-42) in the spinal cord dorsal horn when compared to sham. In conclusion, 4Hz and 60Hz SCS for a 6h at 90% MT were the most effective parameters for reducing hyperalgesia, suggesting parameters of stimulation are important for effectiveness of SCS. SCS reduced glial activation at the level of the spinal cord suggesting reduction in central excitability.