The possibility to perform a stimulated Raman adiabatic passage process in molecules on the ultrafast time scale is investigated theoretically. Motivated by recent experiments, the mid R:B<--mid R:X electronic transitions in molecular iodine are studied as a prototype example with the goal to selectively induce a population transfer employing two intense and time-delayed ultrashort laser pulses and different coupling schemes. For the purpose of interpretation, the coupled multilevel vibronic problem is reduced to a quasi-three-level system by averaging over the vibrational degree of freedom. It is shown that the vibrational dynamics becomes essential at high field intensities. Considering a 2-dimensional parameter space (intensity and delay time of the femtosecond laser pulses), a strong-field control landscape is constructed.