2011
DOI: 10.1109/tcbb.2011.37
|View full text |Cite
|
Sign up to set email alerts
|

Contour Extraction of Drosophila Embryos

Abstract: Contour extraction of Drosophila (fruit fly) embryos is an important step to build a computational system for matching expression pattern of embryonic images to assist the discovery of the nature of genes. Automatic contour extraction of embryos is challenging due to severe image variations, including 1) the size, orientation, shape, and appearance of an embryo of interest; 2) the neighboring context of an embryo of interest (such as nontouching and touching neighboring embryos); and 3) illumination circumstan… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
4
0

Year Published

2013
2013
2019
2019

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 12 publications
(4 citation statements)
references
References 43 publications
0
4
0
Order By: Relevance
“…The dataset contains 2000 images of BDGP Drosophila embryos. Table 1 shows the quantitative results, including the comparison of two existing methods on contour extraction of Drosophila embryos: i) Li and Kambhamettu’s method [3] that consists an initialization based on a quadratic curve model, and a refinement based on an active contour model; ii) Li’s method [4] that can detect and restore deficiencies and faults of primal sketch tokens occurring when a targeting object is surrounded by a complex background. …”
Section: Resultsmentioning
confidence: 99%
See 3 more Smart Citations
“…The dataset contains 2000 images of BDGP Drosophila embryos. Table 1 shows the quantitative results, including the comparison of two existing methods on contour extraction of Drosophila embryos: i) Li and Kambhamettu’s method [3] that consists an initialization based on a quadratic curve model, and a refinement based on an active contour model; ii) Li’s method [4] that can detect and restore deficiencies and faults of primal sketch tokens occurring when a targeting object is surrounded by a complex background. …”
Section: Resultsmentioning
confidence: 99%
“…In general, Drosophila embryonic images contain substantial amount of variations [3, 4]: i) imaging conditions, such as contrasts, scale, orientation, and neighboring embryos, ii) gene expression patterns, and iii) developmental stages. Most existing methods were developed upon low-level image features, such as edge pixels or pixels with a high deviation of grayvalues in a local window [3–10].…”
Section: Introductionmentioning
confidence: 99%
See 2 more Smart Citations