We study the problem of generating independent samples from the output distribution of Google's Sycamore quantum circuits with a target fidelity, which is believed to be beyond the reach of classical supercomputers and has been used to demonstrate quantum supremacy. We propose a new method to classically solve this problem by contracting the corresponding tensor network just once, and is massively more efficient than existing methods in obtaining a large number of uncorrelated samples with a target fidelity. For the Sycamore quantum supremacy circuit with 53 qubits and 20 cycles, we have generated one million uncorrelated bitstrings s which are sampled from a distribution P(s) = | ψ(s)| 2 , where the approximate state ψ has fidelity F ≈ 0.0037. The whole computation has cost about 15 hours on a computational cluster with 512 GPUs. The obtained one million samples, the contraction code and contraction order are made public. If our algorithm could be implemented with high efficiency on a modern supercomputer with ExaFLOPS performance, we estimate that ideally, the simulation would cost a few dozens of seconds, which is faster than Google's quantum hardware.