We prove the existence of closed convex ancient solutions to curvature flows which become more and more oval for large negative times. The speed function is a general symmetric function of the principal curvatures, homogeneous of degree greater than one. This generalises previous work on the mean curvature flow and other one-homogeneous curvature flows. As an auxiliary result, we prove a new theorem on the convergence to a round point of convex rotationally symmetric hypersurfaces satisfying a suitable constraint on the curvatures.