“…Actually, an -space is any set endowed with a structure implying a notion of convergence for sequences. For example, Hausdorff topological spaces, metric spaces, generalized metric spaces in Perov's sense (i.e., ( , ) ∈ R + ), generalized metric spaces in Luxemburg's sense (i.e., ( , ) ∈ R + ∪ {+∞}), -metric spaces (i.e., ( , ) ∈ , where is a cone in an ordered Banach space), gauge spaces, 2-metric spaces, --spaces ( [2,3]), probabilistic metric spaces, syntopogenous spaces are such -spaces. For more details see Fréchet [4], Blumenthal [5], and Rus [1].…”