Formulation of the problem. Understanding that solar energy is the main source of the majority of biological, chemical and physical processes on Earth, investigation of its influence on different climatic fields allows us to define the features of its space and hour fluctuations. To define radiation and temperature regime of the territory it is necessary to determine climatic features of the spreading surface, which absorbs and will transform solar energy. Considering the fact that modern climatic changes and their consequences cover all components of the system, today there is a problem of their further study for comprehension of atmospheric processes, modeling weather conditions on different territories depending on the properties.
The purpose of the article is to determine interrelations between indexes of solar radiation (the Wolf's number) and air temperature, atmospheric pressure on the territory of Ukraine during 1965-2015, their change in space and time.
Methods. Correlative method is one of the main methods of a statistical analysis which allows us to receive correlation coefficients of solar radiation variability indexes, air temperature, atmospheric pressure on the territory of the research. This technique estimates the extent of solar radiation influence on temperature regime of the territory and distribution of atmospheric pressure.
Results. Coefficients of correlation, which characterize variability of solar radiation indexes, air temperature and atmospheric pressure on the explored territory have been received by means of statistical correlation analysis method. This technique allows us to estimate the degree and nature of solar radiation influence on a temperature regime of the territory and distribution of atmospheric pressure. It has been defined that direct correlative connection between indexes of solar radiation is characteristic of air temperature and atmospheric pressure fields. Significant statistical dependence between incoming solar radiation on the territory of Ukraine and atmospheric pressure has been noted during the spring and autumn periods mainly at the majority of stations. Between indexes of solar radiation and air temperature the inverse correlative connection in winter will be transformed to a direct connection during the spring and summer periods.
Scientific novelty and practical significance. Physical processes, which happen in the atmosphere, are characterized by complex interrelations. For further research it is important to define solar radiation value and the extent of influence on climatic conditions.