The new ytterbium(II) thiocyanate complex [Yb(NCS)2(thf)2] (1), synthesised by redox transmetallation between [Hg(SCN)2] and ytterbium metal in THF at room temperature, gave monomeric, eight coordinate [Yb-(NCS)2(dme)3] (2, dme = 1,2-dimethoxyethane) on crystallisation from DME, and is a powerful, synthetically useful reductant. Thus, oxidation of 1 with Hg(SCN)2, Hg(C6F5)2/HOdpp (HOdpp = 2,6-diphenylphenol), TlCp (Cp = C5H5 or CH3C5H4), Tl(Ph2pz) (Ph2pz = 3,5-diphenylpyrazolate) and CCl3CCl3 in THF yielded the ytterbium(II) complexes [Yb(NCS)3(thf)4] (3), [Yb-(NCS)2(Odpp)(thf)3](4), [Yb(NCS)2Cp-(thf)3] (Cp = C5H5 (5), CH3C5H4 (6)), [Yb(NCS)2(Ph2pz)(thf)4] (7) and [Yb(NCS)2Cl(thf)4] (8). In the solid state, complexes 4, 6 and 7 were shown by X-ray crystallography to be six, eight and eight coordinate monomers, respectively. Exclusively terminal, N-bound transoid thiocyanate bonding is observed with eta1-Odpp (4), eta5/-C5H4Me (6) and eta2-Ph2Pz (7) ligands attached approximately perpendicular to the N...N vector. The chloride complex 8 is not a molecular species, but consists of discrete, seven coordinate [YbCl2(thf)5] cations and [Yb(NCS)4(thf)3] anions. By contrast, oxidation of 1 with TlO2CPh gave a mixture of [[Yb(NCS)-(O2CPh)2(thf)2]2] (9) and 3 through rearrangement of an initially formed [Yb(NCS)2(O2CPh)] species. The X-ray structure of 9 indicates a dimeric complex with a (Yb(mu-O2CPh)4Yb] core that contains both bridging bidentate and bridging tridentate benzoate groups, and with a terminal N-bound thiocyanate and two THF ligands on each ytterbium. Reduction of Ph2CO with 1 in THF yielded the dinuclear complex [[Yb(NCS)2(thf)3]2(mu-OC(Ph)2C(Ph)2O)] (10), in which two octahedral Yb centres are bridged by a 1,1,2,2-tetraphenylethane-1,2-diolate ligand, derived from reductive coupling of the benzophenone reagent.