To systematically evaluate the ecological changes of an active offshore petroleum production system, the variation of microbial communities at several sites (virgin field, wellhead, storage tank) of an oil production facility in east China was investigated by sequencing the V3 to V4 regions of 16S ribosomal ribonucleic acid (rRNA) of microorganisms. In general, a decrease of microbial community richness and diversity in petroleum mining was observed, as measured by operational taxonomic unit (OTU) numbers, α (Chao1 and Shannon indices), and β (principal coordinate analysis) diversity. Microbial community structure was strongly affected by environmental factors at the phylum and genus levels. At the phylum level, virgin field and wellhead were dominated by Proteobacteria, while the storage tank had higher presence of Firmicutes (29.3–66.9%). Specifically, the wellhead displayed a lower presentence of Proteobacteria (48.6–53.4.0%) and a higher presence of Firmicutes (24.4–29.6%) than the virgin field. At the genus level, the predominant genera were Ochrobactrum and Acinetobacter in the virgin field, Lactococcus and Pseudomonas in the wellhead, and Prauseria and Bacillus in the storage tank. Our study revealed that the microbial community structure was strongly affected by the surrounding environmental factors, such as temperature, oxygen content, salinity, and pH, which could be altered because of the oil production. It was observed that the various microbiomes produced surfactants, transforming the biohazard and degrading hydro-carbon. Altering the microbiome growth condition by appropriate human intervention and taking advantage of natural microbial resources can further enhance oil recovery technology.