Context
Model driven development envisages the use of model transformations to evolve models. Model transformation languages, developed for this task, are touted with many benefits over general purpose programming languages. However, a large number of these claims have not yet been substantiated. They are also made without the context necessary to be able to critically assess their merit or built meaningful empirical studies around them.
Objective
The objective of our work is to elicit the reasoning, influences and background knowledge that lead people to assume benefits or drawbacks of model transformation languages.
Method
We conducted a large-scale interview study involving 56 participants from research and industry. Interviewees were presented with claims about model transformation languages and were asked to provide reasons for their assessment thereof. We qualitatively analysed the responses to find factors that influence the properties of model transformation languages as well as explanations as to how exactly they do so.
Results
Our interviews show, that general purpose expressiveness of GPLs, domain specific capabilities of MTLs as well as tooling all have strong influences on how people view properties of model transformation languages. Moreover, the Choice of MTL, the Use Case for which a transformation should be developed as well as the Skill s of involved stakeholders have a moderating effect on the influences, by changing the context to consider.
Conclusion
There is a broad body of experience, that suggests positive and negative influences for properties of MTLs. Our data suggests, that much needs to be done in order to convey the viability of model transformation languages. Efforts to provide more empirical substance need to be undergone and lacklustre language capabilities and tooling need to be improved upon. We suggest several approaches for this that can be based on the results of the presented study.