Element and mineral associations are fundamental parameters for palaeoceanographical reconstructions but laboratory methodologies are expensive, time-consuming and need a lot of material. Here, we investigate the quality and reliability of XRF measurements of major elements (Fe, Ti and Ca) using BTX II Benchtop, by comparing them with previous ICP-OES elemental analysis for a set of Late Pleistocene marine sediments from Campos Basin. Although the numerical values of the logarithmic form of the elementary ratios were different, the lnTi/Ca and lnFe/Ca ratios measured by both techniques (XRF and ICP-OES) presented similar downcore results. To correct the XRF intensity data, a linear regression model was calculated and, based on the linear equation generated, the logarithmic values of the elementary XRF ratios were corrected. After the correction, One-Sample t-test and Bland–Altman plot show that both techniques obtained similar results. In addition, a brief paleoceanographic interpretation, during the MIS 5 and MIS 4 periods, was conducted by comparing mineralogical and elementary analysis aiming to reconstruct the variations of the terrigenous input to the studied area. As a conclusion, the results from XRF measurements (BTX II) presented to confirm the viability of such a technique, showing that analysis using BTX II is a reliable, cheap, rapid and non-destructive option for obtaining elementary ratios and mineralogical downcore results at high resolution, allowing stratigraphic and paleoceanographic interpretations.