Marine Archaea are crucial in biogeochemical cycles, but their horizontal spatial variability, assembly processes, and microbial associations across complex coastal waters still lack characterizations at high coverage. Using a dense sampling strategy, we investigated horizontal variability in total archaeal, Thaumarchaeota Marine Group (MG) I, and Euryarchaeota MGII communities and associations of MGI/MGII with other microbes in surface waters with contrasting environmental characteristics across ~200 km by 16S rRNA gene amplicon sequencing. Total archaeal communities were extremely dominated by MGI and/or MGII (98.9% in average relative abundance). Niche partitioning between MGI and MGII or within each group was found across multiple environmental gradients. "Selection" was more important than "dispersal limitation" in governing biogeographic patterns of total archaeal, MGI, and MGII communities, and basic abiotic parameters (such as salinity) and inorganic/organic resources as a whole could be the main driver of "selection". While "homogenizing dispersal" also considerably governed their biogeography. MGI-Nitrospira assemblages were speculatively responsible for complete nitrification. MGI taxa commonly had negative correlations with members of Synechococcus but positive correlations with members of eukaryotic phytoplankton, suggesting that competition or synergy between MGI and phytoplankton depends on specific MGI-phytoplankton assemblages. MGII taxa showed common associations with presumed (photo)heterotrophs including members of SAR11, SAR86, SAR406, and Candidatus Actinomarina.This study sheds light on ecological processes and drivers shaping archaeal biogeography and many strong MGI/MGII-bacterial associations across complex subtropical coastal waters. Future efforts should be made on seasonality of archaeal biogeography and biological, environmental, or ecological mechanisms underlying these statistical microbial associations.
K E Y W O R D Sarchaea, inter-domain networks, microbial interactions, niche partitioning, spatial variability