Contrastive Learning vs. Self-Learning vs. Deformable Data Augmentation in Semantic Segmentation of Medical Images
Hossein Arabi,
Habib Zaidi
Abstract:To develop a robust segmentation model, encoding the underlying features/structures of the input data is essential to discriminate the target structure from the background. To enrich the extracted feature maps, contrastive learning and self-learning techniques are employed, particularly when the size of the training dataset is limited. In this work, we set out to investigate the impact of contrastive learning and self-learning on the performance of the deep learning-based semantic segmentation. To this end, th… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.