To investigate the mechanical properties and deformation patterns of megathrusts in subduction zones, we studied damage zone structures of the Nobeoka Thrust, an exhumed megasplay fault in the Kyushu Shimanto Belt, using drill cores and geophysical logging data obtained during the Nobeoka Thrust Drilling Project. The hanging wall, composed of a turbiditic sequence of phyllitic shales and sandstones, and the footwall, consisting of a mélange of a shale matrix with sandstone and basaltic blocks, exhibit damage zones that include multiple sets of 'brecciated zones' intensively broken in the mudstone-rich intervals, sandwiched by 'surrounding damage zones' in the sandstone-rich intervals with cohesive faults and mineral veins. The fracture zones are thinner (2.7 to 5.5 m) in the sandstone-rich intervals and thicker in the shale-dominant intervals (2.3 to 18.6 m), which indicates a preference of coseismic slip and velocity-weakening in the former, and aseismic deformation in the latter. However, the surrounding damage zones observed in the current study are associated with an increase in resistivity, P-wave velocity, and density and a decrease in porosity, inferring densification and strain-hardening in the sandstone-rich intervals and strain-weakening in the mudstone-rich intervals. These observations indicate that the sandstone-rich damage zones may weaken in the short term but may strengthen in the geologically long term, contributing to a later stage of fault activity. In contrast, the mudstone-rich damage zones may strengthen in the short term but develop weak structures through longer time periods. The observed shear zone thickness in the hanging wall is thinner (2.3 to 18.6 m) compared to the footwall damage zones (12 to 39.9 m), possibly because faults in the hanging wall were concentrated and partitioned between the preexisting turbiditic sequence of alternating shale/ sandstone-dominant intervals, whereas in the footwall, faults were more sporadically distributed throughout the sandstone block-in-matrix cataclasites. A splay fault may evolve and be characterized by physical property contrasts, the lithology dependence of deformation, and the variability of damage zone thickness due to a heterogeneous lithology distribution in the hanging wall and footwall. The deformation patterns observed in the Nobeoka Thrust provide insights to the strain-hardening/weakening behaviors of sediments along megathrusts over geological timescales.