Lithic artefacts are usually associated with the different knapping methods used in their production. Flakes exhibit metric and technological features representative of the flaking method used to detach them. However, lithic production is a dynamic process in which discrete methods can be blurred, and in which features can vary throughout the process. An intermediate knapping method between the discoid and Levallois is commonly referred to under an umbrella of terms (the present research uses the term hierarchical discoid), and is associated with a broad geographical and chronological distribution throughout the Early and Middle Palaeolithic. This intermediate knapping strategy exhibits features of both the discoid and Levallois knapping methods, raising the question of the extent to which flakes from the three knapping methods can be differentiated and, when one is mistaken for another, the direction of confusion. An experimental assemblage of flakes detached by means of the three methods was used along with an attribute analysis and machine learning models in an effort to identify the knapping methods employed. In general, our results were able to very effectively differentiate between the three knapping methods when a support vector machine with polynomial kernel was used. Our results also underscored the singularity of flakes detached by means of Levallois reduction sequences, which yielded outstanding identification values, and were rarely erroneously attributed to either of the other two knapping methods studied. Mistaking the products of the discoid and hierarchical discoid methods was the most common direction of confusion, although a good identification value was achieved for discoid flakes and an acceptable value for hierarchical discoid flakes. This shows the potential applicability of machine learning models in combination with attribute analysis for the identification of these knapping methods among flakes.