This study examined the potential of six aliphatic and aromatic amides, commonly found in natural waters or used as chemical aids in water treatment, to act as organic precursors for nine haloacetamides (HAcAms), five haloacetonitriles (HANs), regulated trihalomethanes (THMs) and haloacetic acids (HAAs) upon chlorination and chloramination. The impact of key experimental conditions, representative of drinking water, including pH ( 7& 8), retention time (4 & 24 h) and bromide levels (0 & 100 µg/L), on the generation of the target DBPs was investigated. The highest aggregate DBP yields upon chlor(am)ination were reported for the the aromatic and hydrophobic hydroxybenzamide; 2.7% ±0.1% M/M (chlorination) and 1.7% M/M (chloramination). Increased reactivity was observed in aliphatic and hydrophilic compounds, acrylamide (2.5±0.2% M/M) and acetamide (1.3±0.2% M/M), in chlorination and chloramination, respectively. The addition of bromide increased average DBP yields by 50-70%. Relative to chlorination, the application of chloramines reduced DBP formation by 66.5%(without Br -) and by 46.4% (with Br -). However, bromine incorporation in HAAs and HAcAms was enhanced following chloramination, of concern due to the higher toxicological potency of brominated compounds.