The ultimate continuum of a material is nothing but the process called fracture. Fracture surface retains the imprint of the entire deformation history undergone in a material. Hence, it is possible to derive the approximate deformation and fracture properties of a material from a systematic fracture feature analysis. There has been large volume of literature available in the open domain correlating different mechanical and fracture responses of reduced activation ferritic martensitic grade steels under various testing conditions/circumstances with corresponding microstructural interpretation. There has been no such literature available to establish the relationship between the two-dimensional fracture geometry/topography with its corresponding deformation and mechanical properties of the material as a function of testing temperature, which has been the primary aim in the current investigation. A comprehensive literature survey has been carried out to realize this fact. In order to establish the above hypothesis, many tensile experiments were carried out at constant strain rate by systematic variation of the test temperature. The initial void volume fraction or the inclusion content of material was kept unaltered and the test temperature has been varied orderly on different multiple specimens to vary the deformation-induced nucleation sites of micro voids (i.e. different carbides, phase interfaces, dislocation pile up etc), which results in a change of fracture topography under uniaxial tensile deformation. A conventional metallographic technique followed by optical microscopy has been employed to understand the basic morphologies and characteristics of the alloy exposed at different temperatures. Fractographic investigation of the broken tensile specimens at various temperatures is carried out to measure the fracture features by using quantitative fractography on representative scanning electron fractographs through image processing.