One of the open issues in evaluations of the contribution from hadronic lightby-light scattering to the anomalous magnetic moment of the muon (g − 2) µ concerns the role of heavier scalar, axial-vector, and tensor-meson intermediate states. The coupling of axial vectors to virtual photons is suppressed for small virtualities by the Landau-Yang theorem, but otherwise there are few rigorous constraints on the corresponding form factors. In this paper, we first derive the Lorentz decomposition of the two-photon matrix elements into scalar functions following the general recipe by Bardeen, Tung, and Tarrach. Based on this decomposition, we then calculate the asymptotic behavior of the meson transition form factors from a light-cone expansion in analogy to the asymptotic limits for the pseudoscalar transition form factor derived by Brodsky and Lepage. Finally, we compare our results to existing data as well as previous models employed in the literature.