Abstract:The present study proposed to assess the geo-environmental impacts of Al Subiya desalination plant discharges in the Arabian Gulf, Kuwait. Most of the power and freshwater needs in the Middle East are met by the desalination of seawater. With approximately 11 million m 3 of freshwater being produced each day, the salinity of the seawater along the Gulf coast is increasing. Due to brine discharge into outlet, salinity combined with higher sea surface temperatures was increased is a big environmental challenge. Therefore, in the current study the evaluation of Salinity and conductivity was higher in outlet samples than the inlet. Understanding chemical quality of sediment is important since many pollutants bind strongly to sediment particles and are persistent in the aquatic environment. The chemical and physical make-up of sediment is largely a reflection of upstream and local geology, land use, surface run off and many other complex phenomena. Many persistent compounds have high molecular weight and therefore settle out quickly and are incorporated with other settled organic materials. Since the sediment-water layer is the most reactive layer of the sea bed, changes in the sediment distribution and its physio-chemical characteristics will certainly occur in relation to time and space. In view of this, a distribution map of the sediment is important to understand the changes in composition and nature of contamination in the aquatic environment. This study set out to survey Al Subiya desalination plant inlet and outlet of marine area in Kuwait's Arabian Gulf water and to generate an updated map of the sediments of Kuwait's marine environment, in terms of pollutant factors and the corresponding map of water quality parameters during the survey of one year. The specific objectives were: 1) total organic carbon (TOC), and total petroleum hydrocarbons(TPH) in the sediment collected from selected station, 2) analyze the water quality parameters (pH, Dissolved Oxygen, temperature, salinity, turbidity, conductivity potential) in Al Subiya desalination plant inlet and outlet region, and 3) examine the level of contamination in sediments in terms of size, composition and concentration of different metals and correlate this data with the available physical water quality parameters.