Biodeterioration is defined as the undesirable change in the properties of materials caused by the activity of biological agents. This process is complex and involves alterations in the physicochemical and mechanical properties by the action of organisms and depends on the microorganisms involved, type of substrate, and environmental conditions. The biodeterioration of cultural heritage is the physical or chemical damage caused by microorganisms on objects, monuments, or buildings that belong to the cultural heritage. Among the main materials that can be affected are: stone, metal, ceramic, polymers, and other materials. Among the main undesirable effects to these materials are: discoloration, dissolution, rupture, and efflorescence among others. Biofilms represent the usual form of growth of bacteria and consist of communities of microorganisms that grow attached to an inert surface or a living tissue, surrounded by an extracellular matrix that they themselves synthesize. The importance of biodeterioration by biofilms is mainly related to changes in pH values, ionic concentrations, oxide-reduction reactions in the biofilm thickness, and in the interface with the substrate and enzymatic degradation. This chapter presents evidence of the participation of biofilms and associated mechanisms in biodeterioration as well as the main prevention and control strategies.