Abstract-The paper presents the derivation of a describingfunction to model the dynamic behavior of a metal oxide semiconductor field effect transistor-based, capacitively commutated H-bridge, including a comprehensive explanation of the various stages in the switching cycle. Expressions to model the resulting input current, are also given. The derived model allows the inverter to be accurately modeled within a control system simulation over a number of utility input voltage cycles, without resorting to computationally intensive switching-cycle level, time-domain SPICE simulations. Experimental measurements from a prototype H-bridge inverter employed in an induction heating application, are used to demonstrate a high degree of prediction accuracy over a large variation of load conditions is possible using the simplified model. Index Terms-Metal oxide semiconductor field effect transistor (MOSFET)-based capacitively commutated H-bridge, switching cycle.