In this work, a robust Adaptive sliding mode controller (ASMC) is proposed to improve the dynamic performance of the Doubly Fed Induction generator (DFIG) based wind system under variable wind speed conditions. Firstly, the dynamic modeling of the main components of the system is performed. Thereafter, the ASMC is designed to control the active and reactive powers of the machine stator. The structure of these controllers was improved by adding two integral terms. Their sliding gains are determined using Lyapunov stability theorem to make them automatically adjusted in order to tackle the external disturbances. Maximum Power Point Tracking (MPPT) strategy was also applied to enhance the power system efficiency. Then, a comparison study with the Field Oriented Control (FOC) based on conventional PI control was conducted to assess the robustness of this technique under the DFIG parameters variations. Finally, a computer simulation was achieved in MATLAB/SIMULINK environment using 2MW wind system model. Satisfactory performances of the proposed strategy were clearly confirmed under variable operating conditions.