One contribution of 15 to a theme issue 'Vision in our three-dimensional world'. The first step in binocular stereopsis is to match features on the left retina with the correct features on the right retina, discarding 'false' matches. The physiological processing of these signals starts in the primary visual cortex, where the binocular energy model has been a powerful framework for understanding the underlying computation. For this reason, it is often used when thinking about how binocular matching might be performed beyond striate cortex. But this step depends critically on the accuracy of the model, and real V1 neurons show several properties that suggest they may be less sensitive to false matches than the energy model predicts. Several recent studies provide empirical support for an extended version of the energy model, in which the same principles are used, but the responses of single neurons are described as the sum of several subunits, each of which follows the principles of the energy model. These studies have significantly improved our understanding of the role played by striate cortex in the stereo correspondence problem.This article is part of the themed issue 'Vision in our three-dimensional world'.