<p style='text-indent:20px;'>In this work, we use the classical moment method to find a practical and simple criterion to determine if a family of linearized Dispersive equations on a periodic domain is exactly controllable and exponentially stabilizable with any given decay rate in <inline-formula><tex-math id="M1">\begin{document}$ H_{p}^{s}(\mathbb{T}) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M2">\begin{document}$ s\in \mathbb{R}. $\end{document}</tex-math></inline-formula> We apply these results to prove that the linearized Smith equation, the linearized dispersion-generalized Benjamin-Ono equation, the linearized fourth-order Schrödinger equation, and the Higher-order Schrödinger equations are exactly controllable and exponentially stabilizable with any given decay rate in <inline-formula><tex-math id="M3">\begin{document}$ H_{p}^{s}(\mathbb{T}) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M4">\begin{document}$ s\in \mathbb{R}. $\end{document}</tex-math></inline-formula></p>