Wireless Sensor Networks (WSN) is the network of the resource-constrained network which forms the foundation of the Internet of Things (IoT). The Routing Protocol for Low-power and Lossy Networks (RPL) is responsible for generating and managing data routing paths. Nodes implementing RPL uses the mechanics of Objective Function (OF) to select the preferred next-hop node – parent node, and optimal routing path to the destination node. If routing decisions are not efficiently made, this results in increased collision domain, leading to packet losses and packet retransmission which impairs the network operational lifetime. In this study, we present the Contiki Operating System (OS), a state-of-the-art OS for IoTs, ContikiRPL; Contiki variant of RPL. We investigated the performance of RPL with respect to its two OFs; Objective Function Zero (OF0) and the Minimum Rank with Hysteresis Objective Function (MRHOF). The performance of these OFs was evaluated on the following metrics; Packet Delivery Ratio (PDR), Power consumption, and network latency. The result shows that MRHOF outperformed OF0 on all metrics with an overall average PDR of 91.5%, a latency of 44ms, and power consumption of 1.72mW across all nodes. This results in optimal network performance with improved network operational lifetime.