ABSTRACT:The controlled radical polymerization of a variety of acrylate monomers is reported using an Ir-catalyzed visible light mediated process leading to well-defined homo-, random, and block copolymers. The polymerizations could be efficiently activated and deactivated using light while maintaining a linear increase in molecular weight with conversion and first order kinetics. The robust nature of the fac-[Ir(ppy) 3 ] catalyst allows carboxylic acids to be directly introduced at the chain ends through functional initiators or along the backbone of random copolymers (controlled process up to 50 mol % acrylic acid incorporation). In contrast to traditional ATRP procedures, low polydispersity block copolymers, poly(acrylate)-b-(acrylate), poly(methacrylate)-b-(acrylate), and poly(acrylate)-b-(methacrylate), could be prepared with no monomer sequence requirements. These results illustrate the increasing generality and utility of light mediated Ircatalyzed polymerization as a platform for polymer synthesis. have revolutionized the field of polymer chemistry, allowing for the synthesis of well-defined macromolecular structures with excellent functional group tolerance. Perhaps of greater importance is the facile reaction conditions that allow nonexperts access to these materials, enabling significant advances across a number of fields. More recently, additional control over living radical polymerizations has been achieved through regulation of the chain growth process by an external stimulus. 5 For example, electrochemical ATRP has been used to pattern polymer brushes on surfaces, 6− 8 as well as gain control over aqueous polymerizations.9 While the employment of externally regulated polymerizations is in its infancy, the potential for further innovation is significant.In considering the wide range of possible external stimuli, light offers many attractive features such as readily available light sources, tunability, and both spatial and temporal control. On this basis, significant work has been dedicated to the development of photoinitiated 10− 17 and photoregulated radical polymerizations (i.e., photocontrolled RAFT, 29 This approach uses a simple reaction setup with only ppm levels of Ir(ppy) 3 and enables efficient activation and deactivation of polymerization leading to control over molecular weight and molecular weight distributions. A fundamental element of this process is that in the absence of irradiation, the chain end rests as the dormant alkyl bromide, protected from deleterious radical reactions but available for reactivation upon re-exposure to light. Moreover, the spatial and temporal control of Ir-catalyzed photomediated processes has been exploited for patterning polymer brushes on surfaces to give novel, 3-D nanostructures.
30Our previous reports on photomediated radical polymerizations focused exclusively on methacrylates. In order to increase the scope and applicability of this strategy, extension to other monomer families is required. Our attention was therefore drawn to acrylate-based polymer...